Search this site
Embedded Files
  • Home
  • CSIR NET JRF ONLINE Classes
    • Pure Maths Complete Syllabus
    • Applied Maths Complete Syllabus
    • Running Course
  • Practice Questions : Mathematics for NET, IIT JAM, GATE
    • Practice on Linear Algebra for CSIR NET
    • Practice on Real Analysis CSIR NET IIT JAM
    • Practice on Group Theory CSIR NET IIT JAM
    • Practice on Complex Analysis for CSIR NET
    • Practice on Ring Theory CSIR NET, GATE
  • Online Courses for CSIR NET 2025
  • Previous Years Questions Papers CSIR NET
  • Best Books for CSIR NET JRF Mathematics
  • Topic Test : Countability
  • T - 10 Test Series for CSIR NET
  • Complex Analysis Test - T 3
  • Task of the Day
 
  • Home
  • CSIR NET JRF ONLINE Classes
    • Pure Maths Complete Syllabus
    • Applied Maths Complete Syllabus
    • Running Course
  • Practice Questions : Mathematics for NET, IIT JAM, GATE
    • Practice on Linear Algebra for CSIR NET
    • Practice on Real Analysis CSIR NET IIT JAM
    • Practice on Group Theory CSIR NET IIT JAM
    • Practice on Complex Analysis for CSIR NET
    • Practice on Ring Theory CSIR NET, GATE
  • Online Courses for CSIR NET 2025
  • Previous Years Questions Papers CSIR NET
  • Best Books for CSIR NET JRF Mathematics
  • Topic Test : Countability
  • T - 10 Test Series for CSIR NET
  • Complex Analysis Test - T 3
  • Task of the Day
  • More
    • Home
    • CSIR NET JRF ONLINE Classes
      • Pure Maths Complete Syllabus
      • Applied Maths Complete Syllabus
      • Running Course
    • Practice Questions : Mathematics for NET, IIT JAM, GATE
      • Practice on Linear Algebra for CSIR NET
      • Practice on Real Analysis CSIR NET IIT JAM
      • Practice on Group Theory CSIR NET IIT JAM
      • Practice on Complex Analysis for CSIR NET
      • Practice on Ring Theory CSIR NET, GATE
    • Online Courses for CSIR NET 2025
    • Previous Years Questions Papers CSIR NET
    • Best Books for CSIR NET JRF Mathematics
    • Topic Test : Countability
    • T - 10 Test Series for CSIR NET
    • Complex Analysis Test - T 3
    • Task of the Day

Enroll for Courses 

Prices are inclusive of Weekly self-evaluation, subject tests & Assignment Discussion Sessions.

Real Analysis                                               2000/-

Syllabus - 

Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral. Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems. Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples. 

Linear Algebra                                             1800/-

Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis. Quadratic forms, reduction and classification of quadratic forms. 

Complex Analysis                                        1500/-

Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations. Contour integral, Cauchy’s theorem, Cauchy’s integral formula, Liouville’s theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem. Taylor series, Laurent series, calculus of residues. Conformal mappings, Mobius transformations.

  Algebra                                                      2000/-

Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements. Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler’s Ø- function, primitive roots. Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley’s theorem, class equations, Sylow theorems. Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Polynomial rings and irreducibility criteria. Fields, finite fields, field extensions, Galois Theory.

Topology                                                       1000/-

Topology: basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness. 

Link
Facebook YouTube Instagram Link

Rsquared

  • Home

  • Contact us

  • About us

  • Get started

Products

  • Batch Course

  • Online Lectures

  • Pure Maths

  • Applied Maths

Practice Sets

  • Real Analysis

  • Linear Algebra

  • Complex Analysis

PYQs

  • CSIR NET

  • CSIR NET Syllabus

  • ISI

  • GATE

Features

  • Online Live Classes

  • Handwritten Notes Slides

  • Weekly Tests

  • Practice Session 

  • Toppers Meet

Google Sites
Report abuse
Google Sites
Report abuse